A Specific Rearrangement of Doubly-charged Ions formed by Electron Impact

By F. W. McLAFFERTY* and MAURICE M. BURSEY (Department of Chemistry, Purdue University, Lafayette, Indiana 47907)

DOUBLY-CHARGED ions in mass spectra are generally found in relatively low abundance (seldom >1% of the most abundant ion^{1a}), and their use in structure determination has been primarily as an indicator of a high degree of unsaturation in the molecule.¹⁻³ Biemann comments that "no direct relationship between the intensity of the singly- and doubly-charged species should be expected";² the substantially higher energies involved[†] can help account for the scarcity of reports on specific decomposition pathways for the ions.⁵ We report here a specific rearrangement in the spectra of benzophenone derivatives which yields $(M - CO)^{2+}$ ions^{5b} whose abundances for particular derivatives are over 10% of the most abundant singly-charged ion in the spectrum.

Striking differences between the decompositions of singly- and doubly-charged molecular ions might be expected on the basis that the former are odd-electron (radical) ions, while the latter can contain either no *or two* unpaired electrons. The well known tendency for aromatic compounds to exhibit abundant doubly-charged ions may be due to the opportunity for complete electron pairing. Note that homolytic cleavage of a diradical doubly-charged ion can yield two odd-electron singly-charged ions (with kinetic energy of coulombic repulsion),† in contrast to the strong tendency of even-electron singly-charged ions to decompose to two even-electron products.⁶

† Recent studies (ref. 4) of metastable decompositions of doubly-charged ions call attention to the fact that in all of those reported the decomposition is accompanied by the release of energy of at least 2 ev (ref. 4b).

In the mass spectra of substituted benzophenones, the formation of the benzoyl ion,^{7a} the C₆H₅ ion,^{7b} and their substituted counterparts^{7c} are the most important processes for the decomposition of the singly-charged molecular ion; but the corresponding processes to form doublycharged ions do not give significant peaks in these mass spectra. The opposite is true for ions formed by the expulsion of CO; $[(M - CO)^{2+}]/$ $[M^{2+}]:[(M - CO)^+]/[M^+] > 100.$ The Table presents the intensity ratios, Z,^{7a} for the parent compound and the substituent effect on these ratios. The (M - CO) ion is by far the most intense doubly-charged ion in the spectrum for this set of compounds at 75 ev. Thus further decomposition is relatively unimportant for the abundant (M - CO) ions, allowing in these cases interpretation of these data in terms of a single rate-constant for formation of the ion.7a

TABLE

Substituent e	effects on $[M - CO]$	ion abundances
$Z = \frac{[\mathrm{YC}_1]}{[\mathrm{YC}_6\mathrm{H}_4]}$	$\frac{12H_9^+}{[CO\cdot Ph^+]}^a Z = \frac{1}{[}$	$\frac{[\mathrm{YC}_{12}\mathrm{H}_{9}{}^{2+}]}{\mathrm{YC}_{6}\mathrm{H}_{4}\mathrm{CO}{\cdot}\mathrm{Ph}^{2+}]}^{\mathrm{b}}$
Y	$\log Z/Z_0$	$\log Z/Z_0$
¢-Me₀N	-0.60	1.61
¢-NH.	-0.53	1.65
¢-HO ℓ	-0.25	0.82
∕p-MeO	-0.70	0.87°
∕p-Me	-0.31	0.40
⊅-Ph	-0.19	0.95
ĥ	0.00	0.00
<i>p-</i> F	0.10	0.67
m-MeO	-0.10	-0.96°
<i>p</i> -I	-0.60	0.35
p-Cl	-0.19	1.13°
¢-Br	-0.17	0.44
m-F	0.13	-0.12
m-Cl	0.19	-0·19°
m-Br	-0.68	-0.61
m-CN	-0.11	0.28
p-CN	-0.05	0.64
m-NO ₂	-0.58	-0.1 ± 0.3 d
p-NO ₂	-0.9d	-0.4 ± 0.3^{d}

^a $Z_0 = 0.040$; ^b $Z_0 = 4.5$, estimated from isotope peak at 77.5 (for Y = H, $[C_{12}H_{10}^{2+}]/[M^+] = 0.060$); ^c interference by singly-charged ions; estimated from isotope peaks; ^d ions of very low intensity.

This reaction involves the formation of an evenelectron doubly-charged ion by decomposition of an even-electron ion; from the discussion above, a possible explanation for its unusually high rate is that the precursor is a diradical species, while all of the electrons are paired in the product ion.[‡] This is consistent with the large rate-enhancement caused by substitution of electron-donating substituents in the *para*-position.

The spectrum of a bis-substituted derivative, pp'dimethoxybenzophenone exhibits the highest rate enhancement observed: log $Z/Z_0 = 1.77$, indicating a similar enhancement of the radical site in the second ring. The substituent effects observed here bear a qualitative relationship to those found in the loss of NO from nitroaromatics,⁸ and suggest that partial localization of the radical site at the carbon atom attached to the nitrogroup may be an important driving force⁹ in addition to the stabilization of the product ion from the NO· loss.

An alternative driving force could be the formation of the Hückel-aromatic benzocyclo-octatetraene dication.§

The effect of substituents on the formation of singly-charged $VC_{12}H_9^{+}$ ions is obscured by the

[‡] Since triplet-singlet conversions are slow, the electrons in the molecular ion must be spin-paired, though in different orbitals, for the reaction to be relatively rapid.

§ We thank Dr. Vernon R. Sandel, Eastern Research Laboratory, The Dow Chemical Company, Wayland, Mass., for this suggestion and for helpful discussions.

possibility for further decomposition; low-voltage studies⁷ were not attempted because of the low ion abundances. However, the effect of most substituents-to lower the net abundance of YC₁₂H₉+.--is quite similar to the net substituent effect on the abundance of $YC_6H_4^+$ in the 75 v spectra of the same compounds.^{7c}

We thank the National Institutes of Health for support of this work. The Hitachi RMU-6A mass spectrometer was purchased from funds given by the National Science Foundation.

(Received, April 3rd, 1967; Com. 317.)

¹ J. H. Beynon, "Mass Spectrometry and its Applications to Organic Chemistry," Elsevier, Amsterdam, 1960: (a) p. 345, (b) p. 375, (c) p. 401, (d) p. 261.
² K. Biemann, "Mass Spectrometry: Organic Chemical Applications," McGraw-Hill, New York, 1962, p. 157.
³ F. L. Mohler, National Bureau of Standards Technical Note 243 (1964); for an unusual exception see M. J. S.

Dewar and P. Rona, J. Amer. Chem. Soc., 1965, 77, 5510.

(a) W. Higgins and K. R. Jennings, Chem. Comm., 1965, 99; (b) J. H. Beynon and A. E. Fontaine, Chem. Comm., 1966, 717.

⁵ (a) Beynon (ref. 1b) points out that abundant $(M - O)^{2+}$ ion in the spectrum of maleic anhydride may be due to the formation of the stable ion $+0 \equiv C:H = CH - C \equiv O^+$; for most ions, such as $(M - 6H)^{2+}$, (ref. 1c) it is more difficult to formulate plausible "specific" mechanisms; (b) Beynon (ref. 1d) has noted analogous doubly-charged ions in the

⁶ (a) F. W. McLafferty, "Mass Spectrometry of Organic Ions," Academic Press, New York, 1963, p. 309; (b) F. W. McLafferty, "Interpretation of Mass Spectra," Benjamin, New York, 1966, p. 30. ⁷ (a) M. M. Bursey and F. W. McLafferty, J. Amer. Chem. Soc., 1966, 88, 529; (b) *ibid.*, p. 4484; (c) *ibid.*, 1967, 200 (c) and a standard standard

89, ì.

⁸ M. M. Bursey and F. W. McLafferty, J. Amer. Chem. Soc., 1966, 88, 5023.

⁹ F. W. McLafferty, Chem. Comm., 1966, 78.